Evidence is provided from stable isotope analysis that aggregations of small ocean sunfish *Mola mola* (total length <1 m) feed broadly within coastal food webs and their classification as obligate predators of gelatinous zooplankton requires revision.

The ocean sunfish *Mola mola* (L. 1758) (Molidae) is the world’s heaviest bony fish (maximum mass = 2235 kg; Carwardine, 1995) with a distribution spanning all tropical and temperate seas (Pope *et al.*, 2010). Significant gaps exist in knowledge of the species through a lack of commercial interest and exclusion from regional and international conservation strategies that focus research efforts upon certain target groups (Sims *et al.*, 2009). These problems are compounded by a historical perception that *M. mola* are solitary and rare pelagic vagrants that impact very little upon the marine systems they drift through (Pope *et al.*, 2010). A series of studies have shown, however, that large aggregations of small *M. mola* total length (*L*_T, typically <1 m) can be highly abundant in coastal waters (Silvani *et al.*, 1999; Sims & Southall, 2002; Houghton *et al.*, 2006) with the overall inference that such locale might serve some purpose as a developmental habitat.

There is an urgent need to reconsider the trophic position of *M. mola* aggregations as the species is removed *en masse* each year as fisheries by-catch with little or
no understanding of the broader ecological consequences (Pope et al., 2010). For example, the species contributed between 70 and 93% of the total fish catch in Spanish drift gillnet fisheries (targeted at swordfish *Xiphias gladius* L. 1758) within the Mediterranean Sea between 1992 and 1994 (Silvani et al., 1999). Whilst the Spanish fishery was closed in 1994 (Silvani et al., 1999; Tudela et al., 2005), an illegal Moroccan drift net fleet continued to operate until 2007 with an estimated annual by-catch of c. 37 000 *M. mola* (Tudela et al., 2005). When considering the overall implications of such wholesale removal from marine systems, it is vital that the putative prey groups that underpin these coastal aggregations are identified. *Mola mola* are typically considered obligate or primary consumers of gelatinous zooplankton (Fraser-Brunner, 1951) and whilst this view has pervaded the literature, it has little empirical support. Indeed, field guides and reference books provide tantalizing insights that the diet of *M. mola* might extend beyond gelatinous zooplankton by listing various stomach contents including algae, crustaceans, ophiuroids, molluscs, hydroids and fishes (Norman & Fraser, 1949; Clemens & Wilby, 1961; Hart, 1973), although how these observations were obtained is rarely specified (Pope et al., 2010).

The best empirical evidence of jellyfish predation comes from Hooper et al. (1973) who considered the distribution of fatty acids in the lipids of four *M. mola* caught off Nova Scotia, Canada. High percentages of 18:0 and 20:4ω6 were found in the tissues which had previously been documented in the tissue of leatherback turtles *Dermochelys coriacea*, which unambiguously feed on jellyfish (Ackerman et al., 1971). These findings in conjunction with numerous anecdotal observations (Pope et al., 2010) provide confidence that *M. mola* do indeed feed on jellyfish. The issue which requires clarification is the nature of this predator and prey relationship (i.e. is it obligate or facultative, forming part of a more catholic diet?). To provide empirical data for dietary composition, the trophic position of eight small *M. mola* (*L* < 1 m) caught as by-catch in fixed tuna nets [targeted at Atlantic bluefin tuna *Thunnus thynnus* (L. 1758)] near the Italian fishing port of Camogli on the Ligurian coast (44° 20' 50.27 ″ N; 9° 09' 21.78 ″ E) was opportunistically investigated during the summers of 2009 and 2010. This historical fishery dates back to the 17th century, with fishermen typically releasing *M. mola* unharmed in their efforts to minimize by-catch (Cappanera et al., 2010).

Using stable isotope analysis (SIA), the general hypothesis that aggregations of small *M. mola* may be better integrated into classical marine food webs than previously thought was examined. Analyses of carbon (δ¹³C) and nitrogen (δ¹⁵N) stable isotope ratios of consumers and their putative prey provide time-integrated information about energy sources, food web structure and consumer trophic positions within ecosystems (Peterson & Fry, 1987). Generally, δ¹⁵N values increase by 2–4‰ per trophic level and can be used to define trophic levels of consumers, whereas δ¹³C values change only little in trophic transfer (McCutchan et al., 2003). In marine systems, benthic and pelagic sources of C differ in terms of ¹³C enrichment, with pelagic-derived C being depleted in ¹³C relative to C derived from benthic or inshore primary producers (France, 1995; Mallela & Harrod, 2008).

A range of both invertebrate and fish species was used to characterize the study site and to place the trophic ecology of small *M. mola* into context. Taxa were collected to provide isotopic data from both putative pelagic- and benthic-associated consumers. Invertebrate samples included indicators of pelagic-derived C and N (crustacean zooplankton, mussels *Mytilus edulis*, jellyfish *Pelagia noctiluca* and two
benthic consumers, the limpet *Patella caerulea* and gastropod *Nucella* sp.). Crustacean zooplankton were collected during horizontal surface tows using a 50 μm plankton net deployed for 30 min., with samples later sorted into 200–500 μm and >500 μm size fractions. Jellyfish medusae (>80 mm bell diameter) were collected with hand-nets from the boat while all benthic invertebrate samples were collected by Scuba diving. Tentacles, oral arms and gonads were removed from jellyfish and only the bells were used for SIA (Pitt et al., 2009). Similarly, only the foot tissue of mussels and gastropods was dissected and used for SIA. Samples of the following fish species were obtained from local fishermen: barracuda *Sphyraena* spp., black scorpionfish *Scorpaena porcus* L. 1758, conger eel *Conger conger* (L. 1758), Atlantic chub mackerel *Scomber colias* Gmelin 1789, anchovy *Engraulis encrasicolus* (L. 1758) and *M. mola*. A small piece of muscle tissue was removed from the dorsal side of each fish, and subsequently stored in ethanol (*M. mola* samples in 2009) or frozen (all other fish samples). The samples were then transferred to the laboratory for further processing for SIA.

All samples for SIA were oven-dried (at 60°C), except jellyfish samples which were freeze-dried, and ground into a fine homogeneous powder using a mortar and pestle. Invertebrate samples were divided into two subsamples: one was acid-washed in 1 M HCl to remove carbonates and re-dried in an oven (for δ13C), and the other was analysed without acid washing (for δ15N). All stable isotope analyses were carried out at the University of Jyväskylä stable isotope facility, using pike *Esox lucius* L. 1758 muscle tissue as an internal working standard to ensure accurate analysis and to allow any required correction for linearity and drift. Internal precision for standards was always better than 0.2‰ for both C and N in each run. *Mola mola* samples collected in 2009 were first preserved in ethanol and dried after careful rinsing in the laboratory. Preservation in ethanol is typically shown to have only little impact (<1‰) on sample δ15N values (Barrow et al., 2008; Syvärantha et al., 2008), while the impacts on δ13C values can be more variable. This probably relates to removal of lipids by ethanol (Syvärantha et al., 2008) and lipids are known to be depleted in 13C leading to lower δ13C values analysed from tissues with greater lipid content, particularly in fish and zooplankton samples (DeNiro & Epstein, 1977; Kiljunen et al., 2006; Syvärantha & Rautio, 2010). The C:N ratios in fish muscle and zooplankton samples ranged between 3.4–4.4 and 5.9–6.2, and those of ethanol-preserved *M. mola* samples 2.8–3.5, indicating higher lipid contents in tissues with higher C:N ratios. Therefore, all fish δ13C values to lipid-free muscle tissue were corrected using a lipid normalization model (Kiljunen et al., 2006) allowing the comparison of ethanol preserved and untreated *M. mola* samples. The zooplankton samples were corrected using a similar lipid normalization model, but specifically revised for zooplankton samples (Syvärantha & Rautio, 2010). Nonetheless, it is conceded that preservation in ethanol might have changed the isotope values very slightly (Edwards et al., 2002; Sweeting et al., 2004; Kelly et al., 2006; Syvärantha et al., 2008), but it is felt that the magnitude of such potential effects did not compromise the analysis.

On average, the small *M. mola* examined here were enriched in 13C by 2.3‰ and in 15N by 5.7‰ relative to that of their putative diet of gelatinous zooplankton (here represented by *P. noctiluca*; see Fig. 1). These values are approximately twice that of typical estimates of diet-tissue trophic fractionation for fish muscle tissue (McCutchan et al., 2003; mean ± s.d. δ13C = 1.3 ± 1.3‰, δ15N = 2.9 ± 1.2‰),
which suggested that carbon and nitrogen assimilated by the *M. mola* sampled here originated from an alternative source. Of the other fishes examined, all apart from the zooplanktivorous, *E. encrasicolus* (Plounevez & Champalbert, 2000) were significantly 13C and 15N enriched relative to indicators of pelagic-derived C and N (see values for jellyfish, zooplankton and *M. edulis* in Fig. 1). From their characteristically enriched δ^{13}C values, these fishes were probably members of a benthic and inshore food web (Jennings et al., 1997; Pinnegar & Polunin, 2000; Mallela & Harrod, 2008). The small *M. mola* examined here were not statistically distinguishable from these other fishes (with the exception of *E. encrasicolus*) (MANOVA of δ^{13}C and δ^{15}N data: Pillai’s trace = 0.23, $F_{2,14} = 2.06$, $P > 0.05$).

The present estimates of δ^{13}C and δ^{15}N for taxa associated with the pelagic food web (jellyfish, zooplankton and mussels) were characteristic of Mediterranean Sea pelagic ecosystems. δ^{13}C and δ^{15}N values for both large and small crustacean zooplankton were similar to that for Mediterranean Sea zooplankton [mean ± s.d. δ^{13}C = $-19.8 \pm 1.0\%$o ($n = 117$); δ^{15}N = $3.8 \pm 1.9\%$o ($n = 120$)] calculated from the literature (Pinnegar & Polunin, 2000; Vizzini & Mazzola, 2005; Koppelmann et al., 2009; Denda & Christiansen, 2011; Fanelli et al., 2011). Although only a single species of jellyfish was sampled (the putative diet of *M. mola*), their isotopic
values were not significantly different (NPMANOVA, $F_{2,14} = 0.07, P > 0.05$) from values for a wide range of Mediterranean Sea gelatinous zooplankton [mean ± s.d. $\delta^{13}C = -19.9 \pm 1.5\%$ ($n = 17$), $\delta^{15}N = 4.3 \pm 1.7\%$ ($n = 16$)] published elsewhere (Malej et al., 1993; Pinnegar & Polunin, 2000; Polunin et al., 2001; Fanelli et al., 2011).

The present results indicate that small-bodied *M. mola* feed within inshore food webs in the Mediterranean Sea, and that the trophic role of *M. mola* extends beyond obligate predation on jellyfish. It is tempting to suggest that the availability of such mixed prey types may be an important factor in the habitat preferences of *M. mola* during early life-history stages. Without comparative studies of larger individuals found in offshore areas (Pope et al., 2010), however, this suggestion remains speculative. One potential caveat is also the proximity of the present sampling to commercial fishing activities which may grant *M. mola* access to discards of species that may not typically form part of their diet in other areas (Hooper et al., 1973; Houghton et al., 2000). Juvenile *M. mola* were not, however, enriched in ^{15}N relative to other fishes, suggesting that they fed at a similar trophic level to the other fishes sampled here (excluding *E. encrasicolus*). This matter aside, the long-standing perception of obligate jellyfish predation by *M. mola* clearly requires some revision.

We extend our thanks to the Cooperative Society of Camogli Fishermen and the Portofino Marine Protected Area for the facilities and the use of boats during the sampling and to C. Schwarz and M. Schwarz for their generous assistance with sample collection and initial processing. We further thank two anonymous reviewers and the Assistant Editor for their comments.

References

